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A direct boundary-layer stability analysis 
of steady-state cavity convection flow 
S. Armfield and R. Janssen 
School of Civil Engineering, The University of New South Wales, Sydney, NSW, Austral ia 

Natural convection flow in cavities with insulated top and bottom and heated and cooled 
walls is known to exhibit travelling wave instabilities in the thermal boundary layers that 
form on the walls. In water (Pr=7.5) at Rayleigh number Ra=6 × 108, these waves have 
been observed at start-up. However no such waves have been observed for the fully 
developed flow, although it may be assumed that the stability character of the boundary 
layers is at least approximately the same. The start-up waves are generated by perturba- 
tions to the system. In the present paper, an artificial perturbation is applied to the system 
to determine the stability character of the boundary layers in fully developed flow. It is 
shown that the thermal boundary layers in the fully developed flow have approximately the 
same stability character as the start-up flow. © 1996 by Elsevier Science Inc. 
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I n t r o d u c t i o n  

When the opposing walls of a cavity, with insulated top and 
bottom containing a stationary and isothermal fluid, are heated 
and cooled to T,,, + A T / 2  and T m - A T / 2 ,  where T,, is the mean 
temperature of the fluid, thermal boundary layers are generated 
on each of the walls. The thermal boundary layers eject heated 
and cooled jets onto the ceiling and floor, respectively, which 
form stable intrusions that transit the cavity. When the intrusions 
reach the far wall, they are partly entrained by the boundary 
layer there, with the unentrained fluid filling the cavity, ulti- 
mately leading to a stratified interior at long time. The reader is 
referred to Patterson and Armfield (1990) for a full description 
of the flow. 

For the flow in a square cavity with Rayleigh number Ra = 6 
× 108 and Prandtl number Pr = 7.5, during the initial transient, 
two packets of unstable travelling waves are observed to transit 
up the hot wall and down the cold wall. The initial packet of 
waves is associated with the start up of the thermal boundary 
layers, while the latter is associated with the intrusion from the 
far wall striking and perturbing the base of the thermal boundary 
layer (Armfield 1989; Patterson and Armfield 1990; Armfield and 
Patterson 1992). 

In Armfield and Patterson (1992) a linearised stability analy- 
sis was presented for the vertical boundary layer during the time 
at which the travelling wave packets referred to above are 
observed. The stability analysis showed that the boundary layers 
will support travelling wave modes, and that above a critical 
point on the hot wall, and below a critical point on the cold wall, 
the boundary layers will be unstable for a narrow band of 
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wave-numbers. This is consistent with the observed behaviour of 
the wave-packets (Armfield and Patterson 1992). It was sug- 
gested that the initial wave packet is generated by the singularity 
that originates at the base of the hot wall at start-up. The wave 
packet is then dispersed, with selected modes decaying and 
amplifying as they travel up the boundary layer according to the 
local stability characteristics. The second packet, as noted above, 
is generated by the perturbation resulting from the intrusion 
striking the base of the thermal boundary layer. The boundary 
layers during the initial transient for the cavity were shown to 
have equivalent stability characteristics to the boundary layers on 
a semi-infinite vertical heated plate. 

After the passage of the second set of boundary-layer waves, 
no further travelling wave activity is observed at the Rayleigh 
number considered, although it may be assumed that during the 
resulting transition phase and at steady state, the boundary layer 
still has approximately the same stability characteristics as it had 
during start-up. That is, if the system is perturbed with an 
appropriate signal, the boundary layer would respond by exhibit- 
ing waves travelling downstream from the point of perturbation, 
and above a certain critical height on the wall, amplifying in the 
direction of travel. It is also well known that for lower Prandtl 
number flows (Pr ~ 1) and for Pr ~ 7 flows in high aspect ratio 
cavities, above a critical Rayleigh number, a bifurcation with a 
single frequency occurs with travelling boundary layer waves of 
the type observed during the initial transient as described above 
(LeQu6r~ and Alziary de Roquefort 1985; LeQu~r~ 1990). It is 
not clear why such a bifurcation with a single frequency does not 
seem to occur for the long time Pr ~ 7 flow in the square cavity 
(Janssen and Henkes 1995). Similarly, it is not known why the 
critical Rayleigh numbers for the cavity flows which do exhibit a 
bifurcation with the characteristics of the boundary-layer waves, 
are always orders-of-magnitude greater than the critical Rayleigh 
number for the equivalent semi-infinite plate. 

In the present paper, the stability of the steady-state cavity 
thermal boundary layers at Pr = 7.5 is examined directly by 
including a perturbation at the base of the hot wall. Both random 
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and single-mode perturbations have been introduced. Introduc- 
ing the random perturbation allows the response to a broadband 
signal to be determined, and specifically the critical Rayleigh 
number and frequency to be approximately identified. The sin- 
gle-mode perturbation then allows the amplification, wave speed, 
and critical Rayleigh number for that mode to be accurately 
determined. The steady-state boundary layer is seen to have a 
critical height below which all modes decay and above which a 
band of modes becomes unstable and begins to grow. This results 
in the boundary layer acting as a band-pass filter for a small 
range of frequencies, in the same manner as the boundary layer 
on a semi-infinite heated vertical plate (Gebhart and Mahajan 
1975). This is a similar character to the start-up flow, although 
the critical values do vary. 

In the remainder of the paper the numerical method is briefly 
described and the results are presented. Next, a discussion is 
presented in which the relation of the instability of the boundary 
layer to possible bifurcation and unsteadiness of the long time 
flow is considered, then the conclusions are presented. 

Numerical method 

The Navier-Stokes equations, together with the temperature 
equation, are expressed in nondimensional form in Cartesian 
coordinates (x, y) with corresponding nondimensional velocity 
components (U, V), pressure P, and temperature T as follows: 

u, + uu. + vu~ = -P.+(u**+u.), 

v,+ vv~+ v& = - &  + (v..  + &r) + 
R a ( T -  Tin) 

Pr 

u x + & = o ,  

1 
T t + UT:, + VTy = ~r(Txx + Try) + Pert 

where subscripts indicate partial differentiation, and the 
Boussinesq assumption for buoyancy has been made. The 
Rayleigh number is defined in the notation, length is nondimen- 
sionalised by H, the temperature relative to the mean tempera- 
ture by AT, and time by H 2 / v .  

Pert is the perturbation added to the flow to allow the 
stability analysis to be carried out. Pert is zero in most of the 
domain except for a small ~ .01 x .01 region at the base of 
the hot wall, where it is set equal to the desired signal. For the 
random perturbation, Pert = (rand(0) - .5)* 10, with rand(0) the 
standard unix FORTRAN random number generator, generating 
numbers in the range 0 _< rand < 1. For the single-mode pertur- 
bation Pert = (sin(2fax), where f is the frequency of the signal. 
Tests have been conducted to ensure that the perturbation 
source amplitude is such that the boundary-layer response is in 
the linear range. 

The equations are discretised using an implicit second-order 
time accurate method defined on a nonstaggered mesh in which 

all the variables are stored at the same grid locations. All second 
derivative, pressure gradient, and divergence terms are approxi- 
mated using second-order centred differences (Armfield 1991, 
1994). The advective terms are approximated using QUICK 
(Leonard 1979). A poisson pressure correction equation, similar 
to that of the SIMPLE schemes, is used to enforce continuity 
and obtain the pressure. The grid scale oscillation in the pressure 
that can occur with nonstaggered grids is prevented by the 
inclusion of additional elliptic correction terms into the continu- 
ity equation. The additional terms are second order and have 
been shown to have negligible effect on the accuracy of the 
solution (Armfield 1994). 

The domain is discretised using 128 points in the x direction 
and 128 points in the y direction, with grid stretching being used 
to concentrate points in the region of the boundary layers and 
the top and bottom boundaries. The time-step used is At = 5 X 
10 -6. It has been shown previously by comparison with experi- 
mental data that the basic features of the transient flow can be 
predicted accurately using an 80 x 80 mesh (Patterson and 
Armfield 1990; Armfield and Patterson 1992). Additional grid 
dependency tests for the present flow were carried out by obtain- 
ing results for a single mode ( f =  5000) on a range of grids 
(100 x 100, 128 X 128, 200 x 200, 256 z 256). For each of these 
grids, the critical height at which this mode became unstable and 
the amplification at midheight were obtained and compared. The 
critical height was the most sensitive parameter, and there was 
found to be a variation of 20% from the 100 x 100 grid to the 
128 x 128 grid and a variation of 10% from the 128 x 128 grid to 
the 256 x 256 grid. The variation in the amplification was negligi- 
ble, and it was noted that the basic features of the flow were 
reproduced on the 100 x 100 grid, and, thus, it was considered 
that the 128 × 128 grid would provide adequate resolution. 

Boundary values are specified for the four sides of the do- 
main as follows. The pressure on all the boundaries is obtained 
by means of a second-order extrapolation from the interior of 
the domain. All boundaries are nonslip, the top and bottom 
boundaries are insulated, while the left and right vertical bound- 
aries are set to AT~2 and - A T / 2 ,  respectively. 

Results 

Results have been obtained for Ra = 6 × 108, 1 x 108, and 6 x 107 
all with Pr = 7.5 in a square cavity. Initially, the fluid in the cavity 
is stationary and isothermal at T = 0. At time t = 0, the left and 
right walls are instantaneously heated and cooled to A T / 2  and 
- AT /2 ,  respectively. Temperature contours for the early part of 
the transition flow at time t = 0.003 for Ra = 6 x 108 are shown 
in Figure 1, with the intrusions and travelling waves identified on 
the figure. The waves shown are part of the second set, which are 
generated by the intrusion striking the base of the hot wall and 
the top of the cold wall. The waves travel in the downstream 
direction (up the hot walls and down the cold wall). Owing to the 
symmetry of the flow, subsequent discussion considers only the 
hot wall. At this stage of the flow development, the interior of 

Notat ion 

g gravity 
H height of the cavity 
Pr Prandtl number 
Ra Rayleigh number =g13ATH3/vK 
T m ambient temperature in cavity 
AT total temperature variation in cavity 

Greek 

13 coefficient of thermal expansion 
K thermal diffusivity 
v kinematic viscosity 
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Figure I Temperature for the initial solution at t=0.O03,  
wi th intrusions and boundary-layer waves marked 
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Figure 2 
t ion at t =  

t 

Temperature contours for the steady-state solu- 
0.5 

the cavity is filled with fluid at ambient temperature. The ther- 
mal boundary boundary layer entrains fluid from the interior of 
the cavity over most of its height, ejecting fluid only over the 
upper 10%, to form the hot intrusion. 

Figure 2 shows the temperature contours for the steady-state 
Ra = 6 × 108 flow, showing that the interior of the cavity has 
now filled with linearly stratified fluid. The thermal boundary 
layer entrains fluid from the interior of the cavity over approxi- 
mately the lower half of the wall and ejects fluid over the upper 
half. 

In Figure 3, the temperature time series in the boundary layer 
adjacent to the hot wall at three vertical locations for the 
transient and steady-state flows are shown. The two sets of 
travelling waves discussed above are seen in the transient results. 
No wave activity is seen in the steady-state results. 

Figures 4 and 5 compare the temperature and velocity pro- 
files in the boundary layer for the initial and steady-state flows at 
three vertical locations. The profiles for the initial flow were 
obtained just prior to the passage of the second set of travelling 
waves; that is, at time t = 0.0015 for the y = 0.25 location, 
t = 0.0018 for the y = 0.5 location, and t = 0.0021 for the y = 0.75 
location. The width of the temperature boundary layer and the 
slope at the wall is approximately the same in both the start-up 
and steady-state flows. However, the total temperature variation 
is considerably more for the steady-state flow at y = .25 and 
considerably less at y = .75 as a result of the stratification in the 
interior. It is also observed that the profile approaches the 
interior temperature uniformly for the initial flow, but nonuni- 
formly for the steady-state flow, with a minimum located at 
approximately x = .025 for the three locations. This is an indica- 
tion that the fluid in the outer part of the boundary layer is being 
accelerated predominantly by viscous forces rather than buoy- 
ancy. Cooler fluid is then lifted above its position of neutral 
buoyancy, leading to the observed dip in the temperature profile 
for the steady-state flow. A similar process occurs in the start-up 
flow, but as there is no stratification of the core fluid, no dip 
results. 

In the velocity profiles, again, the character is approximately 
the same for the two flows, however considerable differences in 
detail are apparent. The steady-state profiles are uniformly 
smaller than the start-up profiles, with the variation increasing 
with height. Another difference is that the peak velocity in the 
steady-state profile reduces from the midheight to the y = 0.75 
location; it increases considerably over this region in the start-up 
flow. The smaller profile for the steady-state flow is again a 
result of the stratification, which increases the stability of the 

core fluid. The reduction in the steady-state profile after the 
midheight occurs because the boundary layer is then de-entrain- 
ing fluid, again as a result of the stratification. 

A random perturbation was included in the flow at the base 
of the hot wall, as described in the numerical method section. 
The resultant temperature time series adjacent to the hot wall at 
a range of vertical locations are shown in Figure 6. For the 
lowest three vertical locations, the amplitude of the perturbation 
appears to be uniformly decaying. After that, some growth is 
seen in the signal, with the growth apparently being confined to a 
small band of frequencies, resulting in at the highest location a 
regular signal with a clearly demarcated frequency band. Clearly, 
a critical height occurs at around the y = 0.1 location, above 
which at least some of the modes in the random signal become 
unstable. 

Spectral results for the steady-state flow with the random 
perturbation included, obtained at a range of vertical locations 
adjacent to the hot wall, are shown in Figure 7. These results 
were obtained using 16,384 sample points at each y location, 
with At = 5 × 10 -6, calculating the fast Fourier transform (FFT) 
and smoothing using a 50-point moving average. Smoothing the 
FFT allows the general trend of the data to be readily discerned, 
although, of course, the result cannot be used to obtain the 
behavior of individual modes. The vertical location of each of the 
time series is given in the figure caption. Initial decay for all 
modes is seen from y = 0.042 to y = 0.084 (Figures 7a-b). How- 
ever, by y = 0.125 (Figure 7c), a very small band of frequencies 
has started to grow, in the region 5000 <f_< 6000. Again, clearly, 
the critical height must lie in the region of y = 0.1 and the 
critical frequency in the range 5000 < f < 6000. To identify more 
accurately the critical frequency that is first to become unstable, 
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Figure 3 Temperature t ime series adjacent to the hot wal l  
at x = 8 . 3  x 10 -3 wi th  y locations indicated on the graphs, 
wi th t ime on the horizontal axis, for the initial f low (a), and 
the steady-state f low (b) 
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Figure 4 Lateral tempera ture  profiles adjacent  to the hot 
wal l  at (a) y=0 .25 ,  (b) y=0 .5 ,  and (c) y = 0 . 7 5  during the 
initial flow (solid line) and steady-state f low (dashed line), 
with distance from the wal l  on the horizontal axis 

0.1 ' 0.()5 ' 0.1 
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a detailed examination of the variation of perturbation amplitude 
with height for a range of single-mode frequencies was carried 
out (as shown in Figure 9), with frequency intervals of A f =  200 
and intervals on the wall of Ay = 0.10. In this way, it was possible 
to identify the frequency to first becomes unstable as f = 5800 at 
a critical height of y = 0.09. As the signal travels up the wall, the 
bandwidth of the amplifying modes increases, so that by y = 0.375 
(Figure 7i), all the modes in the range 4000 < f <  6000 are 
unstable. As the signal continues to travel up the wall, the 
spectra become strongly peaked, and it is also apparent that the 
most strongly amplifying mode is shifting to the left, resulting 
in the strong peak seen at f =  5000 at the y = 0.75 location 
(Figure 71). 

The most strongly amplifying mode at the midheight on the 
wall was obtained in a similar way and found to be f = 4200. This 
is to the left of the peak in the spectra, even at the highest 
location shown. The spectra represent the integral of the mode 
over the height of the wall up to the point at which the spectra 
are shown, and thus the location of the peak is not an accurate 
indication of the most strongly amplifying mode at that height. 
Figure 8 contains the time-series for the f =  4200 case. The 
initial decay and growth of the signal is quite clear. The time- 
series for the critical mode f =  5800 is similar to Figure 8, for 
brevity this graph is not included. 

A plot of the perturbation, amplitude against height is given 
in Figure 9 for both the f = 5800 and f = 4200 modes. The initial 
decay and growth of both modes is quite clear with, as noted 
above, the critical height for f = 5800 occurring at y = 0.09, and 
for f =  4200 at y = 0.1. It is also apparent that at the midheight 
location the f = 4200 mode is growing more strongly than the 
f =  5800 mode. Both modes eventually restabilise, with the f = 
5800 mode restablising at a smaller y. 

Results have also been obtained for Ra = 1 × 108 and Ra = 
6 X 107, both again at Pr = 7.5, to allow the variation in the 
character of the instability with respect to cavity Rayleigh num- 
ber to be investigated. It should be noted that attempts to further 
extend the Rayleigh number range were unsuccessful. At Rayleigh 
numbers lower than 6 × 107, it became very difficult to discern 
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Figure 5 Lateral vertical profiles adjacent to the hot wal l  at 
(a) y=0 .25 ,  (b) y=O.5, and (c) y = 0 . 7 5  during the init ial f low 
(solid line), and steady-state flow (dashed line), with distance 
from the wal l  on the horizontal axis 
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Figure 6 Temperature t ime series adjacent to the hot wal l  
at x = 8 . 3  × 10 -3  wi th  y locations indicated on the graph 
for the steady-state f low wi th  the inclusion of random 
forcing 

transition points owing to the low amplification. At Rayleigh 
numbers much greater than 6 x 108, extremely fine meshes are 
required, additionally, the movement of the critical point very 
close to the inflow comer means that inflow effects will be likely 
to have a major influence on the solution behaviour. 

The overall behaviour of the lower Rayleigh number flows are 
similar to the 6 x 108 flow, and detailed results are not pre- 
sented. A comparison of Yet, Racr, and fc~ for each of the 
Rayleigh numbers is presented in Table 1 with y= the height at 
which a single mode first becomes unstable, R a ,  the Rayleigh 
number based on that height and the cavity temperature differ- 
ence, and f ,  the frequency of the mode that first become 
unstable. The critical Rayleigh number is also given in a cor- 
rected form in which it is based on twice the local temperature 
difference in the boundary layer. The frequency is also given in 
the characteristic form fcr((Pr/Ra)) 2/3, as suggested by Gebhart 
and Mahajan (1975). (Gebhart and Mahajan suggested 
[fvl/3/(g~AT) 2/3] based on a dimensional f and with AT the 
total temperature variation in the boundary layer, f=((Pr/Ra)) 2/3 
is an equivalent expression based on the nondimensional f used 
here and the total temperature variation in the cavity). As can be 
seen, the critical Rayleigh numbers show a variation of a .factor 
of about two, although this is reduced slightly when the local 
temperature difference is used. It is to be expected that a 
variation in the critical Rayleigh number would result from a 
change in the cavity Rayleigh number, as the cavity flows at 
different Rayleigh numbers are dissimilar. Additionally, the 
change in critical height will lead to a difference in the flow 
structure at that height, which could also be expected to alter the 
critical Rayleigh number.  The characteristic frequency 
fcr((Pr/Ra))2/3] also shows some variation between the Ra = 6 x 
108 and the other two results, with a total variation of about 
20%. 

D i s c u s s i o n  

Stability characteristics 

The stability characteristics of the thermal boundary layer for the 
start-up flow were investigated in detail in Armfield and 
Patterson (1992). In that investigation a one-dimensional (l-D) 
set of stability equations were constructed by perturbing a base 
flow solution and dropping all higher-order terms. The resulting 
equations were similar to the Orr-Sommerfeld equations. The 
base flow solutions were obtained both directly from the numeri- 
cal solution, and by using a 1-D error-function solution. Addi- 
tionally, direct measurements of the numerical solution were 
carded out. The parameters that were considered to characterise 
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Figure 7 Spectra for the temperature time series at x = 8 . 3  × 10-3 ,  wi th frequency (cycles/time) on the horizontal axis for y 
locations (a) y=0.042,  (b) y=0.084,  (c) y=0.125,  (d) y=0.167,  (e) y=0.21,  (f) y=0.25,  (g) y=0 .29 ,  (h) y=0.333,  (i) y=0.375,  
(j) y=0.420,  (k) y=0.583,  and (I) y=0 .75  for the steady-state f low with random forcing 

Table 1 Stability characteristics for steady f low (Prl~ 
Cavity Ra Ycr Racr Racr (corrected) fcr for Ra J 

6 × 108 0.09 4.3 × 105 6.8 x 105 5800 0.031 
1 x 108 0.19 6 .8×  105 9 .6×  105 1520 0.027 
6 × 107 0.25 9.3 x 10 s 1.27 x 106 1000 0.025 
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Figure 8 Temperature time series adjacent to the hot wall 
at x = 8 . 3 X  10 -3  w i th  y locations indicated on the graph 
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Figure 9 perturbation amplitude against nondimensional 
height for the crit ical f requency f = 5 8 0 0  (dashed line) and 
the most amplified frequency at midheight f = 4 2 0 0  (solid 
line) 

the stability behaviour of the boundary layer were the frequency, 
velocity, and amplification factor of the maximally amplified 
component at midheight on the cavity wall, and the critical 
Rayleigh number, corresponding to the height at which a single 
mode fwst became unstable. These parameters were designated 
fmax, Vmax, Amax, and Racr, respectively. 

In the present paper, these parameters have been obtained 
for the vertical boundary layers in the steady-state cavity flow, by 
including a perturbation in the solution at the base of the hot 
wall and analysing the temperature time series obtained at 
monitor points at a range of heights adjacent to the hot wall. The 
distance of the monitor point from the wall has been chosen to 
give the smallest critical height at which a single mode first 
becomes unstable. The temperature time series at monitor points 
is readily collected experimentally by the use of fixed thermistors 
(Patterson and Armfield 1990), and was thus considered an 
appropriate quantity for the present analysis. 

Considering only the Ra = 6 x 108 case, for which the most 
detailed results have been presented, and which may be com- 
pared to the results obtained for the start-up flow in Armfield 
and Patterson (1992). The amplification factor for the maximally 
amplifying component at midheight, identified above as fm~x = 
4200, is Area x = 4280. The amplification A is defined by the 
expression exp(A At) = T, where At is the time for the wave to 
travel Ay = 0.1 and x = [AT'(y + Ay)/AT'(y)] with AT' the 
perturbation amplitude. A comparison of the results obtained in 
Armfield and Patterson for the start-up flow, and the results 
obtained here for the steady-state flow, is given in Table 2, where 
here the critical Rayleigh number for the steady-state flow is 
based on twice the local temperature difference in the boundary 
layer; i.e., the corrected critical Rayleigh number given in Table 
1. The ratio of the wave velocity Vma X to the peak advection 
velocity at mid_height in the boundary layer is 1.20; whereas, the 
ratio of Vma X to the peak advection velocity for the initial flow is 
1.02. As noted above, the critical component that first becomes 
unstable, at y = 0.09, has a frequency f =  5800, considerably 
greater than the frequency of the maximally amplifying compo- 
nent at midheight. It is of interest to note that for f = 5,800 at 
the midheight the amplification factor is A = 2107, and the wave 
velocity is v = 750. It is clear that the two flows have approxi- 

mately the same stability character. Overall, the steady-state 
boundary layer is more unstable than the start-up boundary 
layer, with a larger maximum amplification at midheight and a 
smaller critical Rayleigh number. 

For both the start-up and the steady-state flow, the maximally 
amplifying frequency at the midheight is less than the critical 
frequency to first become unstable. The critical frequency to first 
become unstable for the start-up flow was not given in Armfield 
and Patterson (1992) but is easily obtained from the results 
presented there and is included in Table 2. It should be noted 
that the critical Rayleigh number for the start-up flow given in 
Armfield and Patterson was obtained by converting a critical 
time obtained from a stability analysis of the one-dimensional 
error function solution to a height on the wall by comparing the 
error function temperature field at that time with the two-dimen- 
sional (2-D) temperature field obtained from the numerical 
solution. This produced a critical Rayleigh number considerably 
larger than that obtained by a one-dimensional (l-D) stability 
analysis of the 2-D similarity solution for the semi- 
infinite isothermal plate, for which Racr = 2.4 × 105 (Nachtsheim 
1963). Recent work in which a direct stability analysis of the 
isothermal plate has been carded out has verified the critical 
Rayleigh number given in Armfield and Patterson. The relatively 
low value obtained by carrying out a 1-D stability analysis of the 
similarity solution may in part be a result of nonparallel effects. 

The boundary layer for both flows has a strongly banded 
stability character, whereby only those frequency components in 
a small band around the maximally amplifying component at any 
height are unstable. When this is combined with the shift in 
frequency of the maximally amplifying component, and thus the 
unstable band, to lower frequencies, it is possible for unstable 
components to become stable as they travel up the wall. How- 
ever, this variation in the maximally amplified component is 
small with respect to the change in height, which is an important 
feature of the flow, because it means that components that 
become unstable remain unstable for quite some time. Addition- 
ally, the total unstable band; that is, those components that were 
unstable at any height, is quite narrow at these Rayleigh num- 
bers. If this were not the case, the boundary layer would not 
exhibit the selective amplification feature. 

T a b l e  2 Comparison of stabi l i ty characterist ics for ini t ial  and steady-state f lows 

Flow fmax Vmax Amax Racr fcr 

Init ial 4761 1200 3600 2.7 X 106 6200 
Steady-state 4200  936 4280  6.8 x 10 s 5800 
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It is well known that a bifurcation with a single mode associated 
with the boundary layers will occur for the Pr = 0.71 flow in a 
square cavity with insulated horizontal walls at Ra ~ 2 × 108 
(LeQu~r6 and Alziary de Roquefort 1985). No such single-mode 
bifurcation has been observed for the Pr ~ 7 flow in a square 
cavity with adiabatic top and bottom. A bifurcation has been 
observed for the square cavity at Pr = 7 with conducting top and 
bottom; however, this is associated with a Rayleigh/Bernard 
instability of the horizontal flow rather than a boundary-layer 
instability. 

LeQuEr~ (1990) has reported a boundary-layer bifurcation of 
the Pr = 7 flow with an aspect ratio height/width = 10 and 
insulated horizontal walls at a Rayleigh number 8.4 × 109 < Ra 
< 9 × 109 (note LeQurrr ' s  Rayleigh numbers were based on the 
cavity width; whereas, the Rayleigh number used here is based 
on the cavity height). In this case, the boundary layer waves are 
clearly visible, as noted by the author, travelling around the 
downstream corner, across the horizontal part of the flow, and 
into the opposite boundary layer. 

It is clear that the critical Rayleigh number for the instability 
of the vertical boundary layer for Pr = 7, in the long time cavity 
flow, is not a good predictor of the critical Rayleigh number for 
the occurrence of a cavity bifurcation associated with the bound- 
ary-layer instability. It has been shown that the steady-state 
cavity boundary layers have a critical Rayleigh number of Racr ~ 
1 × 106. Thus, for the Ra = 6 × 108 case, although the flow on 
90% of the vertical walls is unstable, the flow is still nonoscilla- 
tory. As noted above, at present no single-mode bifurcation of 
the square cavity flow for Pr ~ 7 with insulated top and bottom 
has been observed for any Rayleigh number. For high Rayleigh 
numbers (Ra > 101°), unsteady, long time flows have been ob- 
tained; however, the flow at such high Rayleigh numbers appears 
to undergo a sudden broad band transition to an apparently 
chaotic flow, rather than a bifurcation to a periodic or quasi-peri- 
odic flow, as might be expected (Janssen and Henkes 1995). 
Additionally, mesh-independent solutions have not been ob- 
tained for these unsteady, high Rayleigh number flows, and as a 
result, an accurate critical Rayleigh number for transition to 
unsteady flow has not been determined. 

The reason that the instability of the boundary layer does not 
necessarily lead to a bifurcation of the cavity flow is that the 
boundary layer is convectively unstable; whereas, the cavity bifur- 
cation is associated with an absolute instability. A convectively 
unstable system is one in which an imposed perturbation will 
exhibit a spatial growth; in this instance, the perturbation leads 
to waves that travel in the downstream direction on the boundary 
layer and grow as they travel. If the perturbation is removed, the 
waves dissipate, and the flow becomes steady, and, thus, to 
maintain the wave-like nature of the system, the perturbation 
must be continually imposed. An absolutely unstable system is 
one which exhibits an unsteady oscillating solution without the 
continual imposition of a perturbation, such as is observed for 
the Pr = 0.71 cavity flow. 

The convective instability of the boundary layer might lead to 
an absolute instability of the cavity flow if some mechanism in 
the cavity acts to feed the wave energy exiting the boundary layer 
at the downstream end back into the upstream end of the 
boundary layer. If, for example, the travelling waves were able to 
exit the top of the hot boundary layer, travel across the horizon- 
tal region of the flow, and enter the upstream end of the cold 
boundary layer, and similarly at the downstream end of the cold 
boundary layer, then we could expect to see a bifurcation. If we 
further assumed that the waves travelled across the horizontal 
region without any amplification or dissipation, then it is clear 
that a bifurcation would occur when a single mode experiences a 
net amplification in the boundary layer; that is, the total amplifi- 

Stability analysis of cavity flow." S. Armfield and R. Janssen 

cation in the unstable downstream region is greater than the 
total dissipation in the stable upstream region. 

Such a bifurcation would still not occur at the critical Rayleigh 
number for the boundary layer, because at that Rayleigh num- 
ber, the entire boundary layer is dissipative. For the dissipation 
in the stable part of the boundary layer to be exactly balanced by 
the amplification in the unstable part, it is dearly necessary that 
the Rayleigh number based on the cavity height must be consid- 
erably greater than the critical Rayleigh number. Additionally, 
the feedback mechanism may itself be dissipative, requiring the 
Rayleigh number to be higher still. 

In the high aspect ratio cavity, in which a bifurcation has been 
observed as noted above, the vertical walls are close enough 
together so that the horizontal flow is modified, and wave energy 
can travel across the horizontal flow region from the downstream 
end of one boundary layer to the upstream end of the other. This 
is quite clear in the figures presented in LeQurr6 (1990) and is 
noted by the author. The author also notes that the thermal 
boundary layers for the high aspect ratio cavity are similar to the 
boundary layers for the square cavity, and, thus, the stability 
characteristics of the boundary layers in the high aspect ratio 
cavity will be similar to those for the square cavity. The high 
aspect ratio flow, thus, satisfies the requirements given above for 
the occurrence of an absolute cavity instability as a result of the 
convective boundary-layer instability. The convectively unstable 
boundary layers are combined with a feedback mechanism to 
produce an absolute instability of the cavity flow, and the critical 
Rayleigh number for the cavity flow is then several orders of 
magnitude greater than the critical Rayleigh number for the 
boundary layers. 

For the square cavity at Ra = 6 × 108, Pr = 7.5 and insulated 
top and bottom considered here, there is apparently no such 
mechanism. The downstream end of the boundary layer together 
with the horizontal flow are strongly dissipative to the boundary- 
layer travelling waves. Thus, no energy from the downstream end 
of one boundary layer travels across to the other boundary layer. 
Similarly, no wave energy is fed back directly from the down- 
stream end of one boundary layer to its own upstream end. With 
no feedback mechanism, the convective instability of the bound- 
ary layer cannot result in an absolute instability of the cavity, 
and, thus, no bifurcation can occur. 

If the Rayleigh number for the cavity is large enough, then 
even the input of very small perturbations into the boundary 
layer, such as those associated with numerical round-off, will be 
amplified to such an extent that an unsteady flow is produced. 
Because a total amplification of only an order of magnitude is 
obtained over the height of the cavity for the Ra = 6 × 108 flow, 
it is likely that such a mechanism would require Rayleigh num- 
bers considerably higher than those considered here. The un- 
steady flows that have been observed in the square cavity at high 
Rayleigh numbers may result from the purely convective instabil- 
ity in this way. 

Conclusions 

A direct analysis of the stability of the thermal boundary layers 
on the vertical walls, for steady-state flow in a cavity with a 
horizontal temperature gradient and insulated top and bottom, 
was carried out. The analysis consisted of introducing a con- 
trolled perturbation at the base of the hot wall. The boundary 
layer was able to support travelling wave solutions, and, thus, the 
perturbation led to a wave train travelling in the downstream 
direction. Both random and single-mode perturbations were in- 
put. Time series of the temperature adjacent to the hot wall at a 
range of vertical locations allowed detailed results for the stabil- 
ity characteristics to be obtained. The purpose of the analysis was 
to determine the stability characteristics of the thermal boundary 
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layer for the steady-state flow and compare it to the stability 
characteristics of the thermal boundary layer for the equivalent 
start-up flow, which were obtained and presented in Armfield 
and Patterson (1992). 

Both flows were observed to have similar stability characteris- 
tics, with the primary difference being the increased instability of 
the steady-state flow. The steady-state flow has a smaller critical 
Rayleigh number, lower critical frequency, and maximally ampli- 
fying frequency at midheight and larger amplification factors. 

Despite the instability of the boundary layer for the steady- 
state flow, no bifurcation or unsteadiness of  the long time flow is 
observed. It is hypothesised that a bifurcation will only occur if 
the convective instability of the boundary layer is combined with 
a feedback mechanism of some sort and that the critical Rayleigh 
number for a bifurcation would be expected to be considerably 
greater than the critical Rayleigh number for the instability of 
the boundary layer. Similarly, the convectively unstable boundary 
layer may lead directly to a broad-band unsteadiness, but this 
would, again, be at a Rayleigh number much greater than the 
critical boundary-layer Rayleigh number. 
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